HIGH PERFORMANCE, EDGE AND CLOUD COMPUTING

HIGH PERFORMANCE, EDGE AND CLOUD COMPUTING

THE NEXT COMPUTING PARADIGM

Building the next computing paradigm

The 'next computing paradigm' is the convergence of technologies including the web, cyber-physical systems (CPS), cloud computing, the internet of things (IoT), digital twins and artificial intelligence (AI) into a coherent, federated ecosystem.

European academic and industry leaders need to **act fast** to establish made-in-Europe technologies in this rapidly changing landscape. Technological offerings should **meet the needs of European markets**, while ensuring that European technology is synonymous with **quality and trustworthiness** in the minds of consumers across the globe.

The HiPEAC Vision for the European computing ecosystem is characterized by the following factors, which play to European strengths and establish a 'European' flavour of computing:

- Collaborative
- Federated
- Distributed
- Interoperable
- Open source
- Trustworthy (i.e. explainable, reliable, secure, safe and privacy-preserving)
- Sustainable

HIGH PERFORMANCE, EDGE AND CLOUD COMPUTING

PRIORITIES FOR RESEARCH

HIGH PERFORMANCE, EDGE AND CLOUD COMPUTING

RECOMMENDATIONS RESEARCH PRIORITIES

1. Technologies for a smart, interoperable, made-in-Europe computing continuum

- Foundation models and specialized action models, which need to be refined, optimized and reduced in size.
- Al-powered orchestrators for the edge that can combine compute components into executable applications.
- Orchestrating technologies that can analyse and select the best SAM for a particular task and dynamically activate them.
- Generative AI at the edge, with new ways of interaction (voice, gesture, eye movements).

HIGH PERFORMANCE, EDGE AND CLOUD COMPUTING

RECOMMENDATIONS RESEARCH PRIORITIES

1. Technologies for a smart, interoperable, made-in-Europe computing continuum

- Digital envelopes to enable services across the continuum: interoperable runtime systems, service and code migration, optimization for latency, privacy, security, etc.
- Al-assisted software development environments, prioritizing correctness, safety, security, confidentiality and regulatory compliance.

HIGH PERFORMANCE, EDGE AND CLOUD COMPUTING

RECOMMENDATIONS RESEARCH PRIORITIES

2. Next-generation, designed-in-Europe hardware for the NC

- Specialized hardware for the edge, able to support services, orchestrators and specialized action models (SAMs) in federated networks.
- Non-volatile memory for direct edge execution, near- or in-memory computing.
- Hybrid and non-digital accelerators, moving from exact computations (digital) to approximate computing (Ising, Bayesian, stochastic, etc.).
- Open AI assistants for hardware development, focusing on open domains such as architecture search.

HIGH PERFORMANCE, EDGE AND CLOUD COMPUTING

RECOMMENDATIONS RESEARCH PRIORITIES

3. Future-proof, connected safety-critical systems

- Cross-domain research integration: shared ontologies, modelling tools, and evaluation frameworks to align diverse technical disciplines under common goals.
- Solutions that maximize interactions between safety, security and performance.
- New dependability frameworks: modular and adaptive safetysecurity-performance models, extending hazard-analysis techniques like STPA.
- Real-time resilience: runtime verification, feedback mechanisms and uncertainty quantification tools that ensure dependable operation in dynamic and unpredictable environments

HIGH PERFORMANCE, EDGE AND CLOUD COMPUTING

RECOMMENDATIONS RESEARCH PRIORITIES

4. Securing the computing continuum

- Scalable technologies for supply-chain tools to identify vulnerabilities at code and component levels.
- Scalable security analyses at orchestrators, services, and communications levels.
- Al models for threat detection and autonomous systems for mitigation, preferably based on European, open foundation models.
- Tools to detect and secure against AI model vulnerabilities, including prompt injection vulnerabilities.

HIGH PERFORMANCE, EDGE AND CLOUD COMPUTING

RECOMMENDATIONS RESEARCH PRIORITIES

5. Sustainable digital systems for future generations

- Life-cycle models for digital products and services, integrated into design decisions and research outcomes.
- Computing solutions that can report sustainability metrics to orchestrators, thereby enabling digital product passports.
- Sustainable-by-design methodologies and circular business models.

HIGH PERFORMANCE, EDGE AND CLOUD COMPUTING

