
ToolsRecommendations for toolsPromote the use of AI in software developmentResearch, prototype and deploy AI-assisted software development environments, whileimplementing robust measures to ensure correctness, safety, security, confidentiality, andregulatory compliance. This will help balance the rapid adoption of AI with the need forsecure and reliable systems. It should also help non specialists to be able to create efficientsoftware and increase the productivity of developers.Promote the use of AI in hardware developmentResearch, prototype and deploy open AI assistants for hardware development, increasingthe productivity for designing new, efficient hardware and decreasing the time to market.This is a key element for Europe to stay in the hardware race. The use of AI should be acollaboration between humans and AI systems, as promoted in previous HiPEAC vision as‘centaur’ teams. The focus should be on domains that are still open, like architecture searchand exploration, rather than on optimizing the floor-planning, which is already covered byvarious companies.IntroductionThe history of hardware and software development has been a progression towardspecifying more what is to be done and less how it is to be done – a move fromimplementation detail towards higher abstraction. The primary factors that have fuelled that
HiPEAC Vision 2025 - Articles 1

progression have been improvements in processor speed and compiler optimization. Itappears that the next technical advance which can drive a new discontinuity in thisprogression is AI-based hardware and software development tools.These tools are revolutionary due to their ability to create hardware or software from anatural language description without any human intervention. If the dream to automate theentire development process becomes reality, it would democratize software, allowinganyone to create state-of-the-art software, while potentially eliminating many hardware andsoftware developer jobs. While a similar impact may be seen across many sectors, AI-basedtools for hardware and software are distinct from AI in other contexts, due to the strict needfor correctness and security, the complexity of integrated co-design hardware/softwaresystems and the limited training data for hardware design and new technologies.AI-based tools have the potential to disrupt software and hardware development, andmissing out on this discontinuity could leave Europe hopelessly behind. The NCP takes forgranted the ability for the user to orchestrate and create new software capabilities thatwould have traditionally required custom software development. These AI tools alsostreamline the development process, reducing the time and cost to develop the NCP itself.For Europe to successfully lead the NCP, it must have access to the latest technologies,which depends on its universities, research centres and companies being up to date with theforefront of advances in the AI revolution.State of the artAccording to the 2024 Stack Overflow Developer Survey [StackOverflow2024], 62% ofsoftware developers were already using AI tools, with an additional 14% planning to adoptthem soon. As of the time of writing, these tools can generate functional code from a naturallanguage description, spot likely errors (off-by-one errors or usual code patterns), suggestand apply refactoring, estimate computational complexity, and so on. They leverage vasttraining data and an understanding of patterns, semantics and context, and are much morepowerful and tolerant of ambiguity than earlier tools such as syntax-directed parsers. Theycan help modernize code to a new environment (e.g. language, major API revision, certifiedOS), and also generate documentation and test cases, helping maintainability and teamonboarding. For a more detailed survey of these capabilities, see [Metzger][KordonZaourar].GitHub Copilot [GitHubCopilot] is a state-of-the art AI-powered coding assistant, whichintegrates OpenAI’s Codex model [OpenAICodex] into Microsoft’s developmentenvironments such as Visual Studio Code and GitHub. It provides developers with real-timecode suggestions, completions, and contextual guidance, across a wide range ofprogramming languages and frameworks, streamlining tasks from boilerplate generation todebugging. By analysing surrounding code and comments, it predicts and generates relevantcode snippets, enabling faster development and reducing repetitive tasks. Microsoft haspositioned Copilot as not just a tool for writing code but as an intelligent collaborator thatenhances productivity, encourages best practices, and lowers the barrier to entry forcomplex programming tasks. As such, it is a complement to their broader Microsoft CopilotAI companion [MicrosoftCopilot], which is integrated across multiple Microsoft products,including Word, Excel, PowerPoint, Outlook and Teams.Google’s Gemini Code Assist [GoogleCodeAssist] is another prominent AI coding assistant,which integrates with integrated development environments (IDEs) such as Visual StudioCode, JetBrains IDE and others, supporting major languages such as Java, JavaScript,Python, C and C++. In December 2024, Google announced Gemini 2.0, which includes Jules,a more powerful but experimental AI-powered coding agent for Python and Javascript,which integrates with developers’ GitHub workflows, handling code development such asbug fixes, and preparing pull requests to land fixes directly back into GitHub [GoogleJules].
Tools2

Meta’s Code Llama [CodeLlama] was released in 2024 as an extension of their Llama 2language model that is fine-tuned for software development across multiple programminglanguages. Unlike most of the alternatives, the model weights and inference source-code forCode Llama are freely available under Meta's strategy of fostering open innovation in the AIecosystem [CodeLlamaLicence]. As such, it offers the possibility for fine-tuning andcustomization.Overall, AI-driven coding assistants have amassed nearly $1 billion of funding since the startof 2023, with the vast majority, such as Microsoft’s Copilot, Google’s Gemini, and tools fromstartups such as Replit and Magic, being controlled by US-based companies [FTAug2024].Mistral AI, a Paris-based startup, is a notable European success that has made significantstrides in the AI ecosystem, releasing several AI language models and raising substantialfunding. Their Codestral model [Codestral] has been specialized for code development,and it targets 80+ programming languages, including Python, Java, C, C++, Javascript andBash. With its context window of 32K tokens, Codestral outperforms other models inRepoBench, a benchmark for code generation.In the high-performance computing (HPC) space, the LLM4HPC project at Oak RidgeNational Laboratory has developed a number of tools for HPC software development[LLM4HPC]. This includes ChatBLAS, an AI-generated BLAS (Basic Linear AlgebraSubprograms) library for linear algebra, automatic parallelization with large language models(LLMs), F2XLLM for Fortran modernization, and is developing ChatHPC, an AI assistant forHPC programmers.There are also several efforts to develop AI-based tools and platforms to assist withhardware design, although most are either proprietary or not widely available (see [ALSAQER]for a recent survey). ChipNeMo [ChipNeMo] is an LLM developed by NVIDIA, specificallytailored for the semiconductor industry. By employing domain adaptation techniques—suchas custom tokenization, domain-specific pretraining, and supervised fine-tuning—ChipNeMoenhances performance in chip design tasks. It excels in applications like engineeringassistant chatbots, electronic design automation (EDA) script generation, and bugsummarization and analysis, often surpassing general-purpose models. As of now,ChipNeMo is not publicly available. NVIDIA has detailed its development and capabilities inresearch publications, but the model itself remains proprietary and is not accessible forpublic use.Other important activities include ChipGPT [ChipGPT], which generates and optimizesVerilog code from a natural language specification. ChatEDA [ChatEDA] is an AI-basedassistant that helps engineers orchestrate a complex EDA workflow using natural language.Additionally, LLMs have been employed to assist in the writing of architecture specifications(e.g. SpecLLM [SpecLLM]) and to explain error messages from synthesis tools [Qiu24].
HiPEAC Vision 2025 - Articles 3

Figure 1: GitHub Copilot, a state-of-the-art AI-powered coding assistant [GitHubCopilot]Explore the use of AI-based tools to support software andhardware development, but insist on measures to ensurecorrectness, safety, security, confidentiality and compliance.The biggest barrier and risk associated with generative AI in development is the inability tofully trust the code it produces. Like people, these tools are prone to confabulation (or“hallucination”), generating incorrect or misleading outputs. Given the opaque nature of AI-based models and likely lack of access to their training data, AI-generated code, whetherhardware or software, must be seen as unsafe and insecure. This poses a significantchallenge in the context of the NCP, where AI-generated software would be expected tointeract with the internet and influence the real world, all without human oversight. Anotherrisk is confidentiality, particularly with online tools provided by third parties, as well asshared tools within an organization that has access to confidential third-party software.As discussed below, Europe should invest in basic research (including formal methods) andenact sovereignty measures to address these risks. In the meantime, however, developmentprocesses must be set up for careful human reviews of AI-generated code, just like codefully written by a human programmer.Use a combination of LLMs and traditional tools, with theLLM as the user interface and driver to orchestrateIt is likely that all aspects of code development, debugging, optimization and maintenancewill shift to using a natural language as the bridge between the human and machine.The more interesting question is where to place the interface between the LLM and lowerlevels of the hardware–software stack. Programming languages have traditionally beendesigned and updated with the expectation that most code will be written by humans. Anexception is assembly languages, which were initially written by humans, but for decadeshave been designed to be targeted by a compiler. In general, programming languages arecreated to address a specific need, often tailored to an application domain, hardwarearchitecture and performance requirements. Overall, they end up being created to solve areal practical problem created by application/user needs and/or platform capabilities, andthey find a corresponding trade-off among many factors, including abstraction,
Tools4

expressiveness, simplicity, understandability, maintainability, safety, reliability, efficiency,support for parallelism, scalability for large codebases, portability, and support for a robustecosystem of tools and libraries.It remains uncertain which languages should be targeted by the AI-based tool, and whetherthe ambitious vision of an AI-based model directly transforming “natural language totransistors or machine code” will ever be feasible, especially for current million-line pluscodebases. Achieving this vision is likely to face significant challenges related to energyefficiency (of the AI-based system generating the code), scalability (to ever largercodebases), precision (resolving the inherent ambiguities of natural language), andunderstandability (to support human and/or machine verification and facilitatetroubleshooting). These challenges suggest that one or more levels of abstraction betweennatural language and machine-level code will remain necessary. Abstraction not only helpsmitigate ambiguity and complexity but also provides modularity and structure, essential fordebugging, optimization, and the efficient generation of scalable systems.Hardware and software development depends on various auxiliary tools, such as simulation,model checking and timing analysis tools (for hardware), debuggers (for software), as wellas performance and energy analysis tools, verification, static analysis and code coveragetools. Human intuition and creativity will increasingly be replaced with AI-based tools, buttraditional optimization algorithms are extremely powerful and should continue to have aplace at the lowest level. These tools often have idiosyncratic interfaces, and they arehindered by the multiple levels of abstraction between the machine and the high-level code,that may need to be traversed to understand what has gone wrong. The key is to operate atthe right level of abstraction to solve the issue, as high as possible, while being able to dropto the lowest levels where needed. This presents a significant opportunity for AI-driven toolsto drive developer tool use through natural language interaction, automate tools integrationwithin a larger AI controlled workflow, and translate cryptic error messages into higher-levelcode suggestions.Support a European ecosystem that includes basic researchin AIEurope’s universities, research centres and companies must be at the forefront of basicresearch in AI, pursuing important research topics such as the following:Correctness, safety and security. As discussed above, this is the greatest barrier tothe adoption of AI. Formal methods can be used to prove correctness and securityproperties (see for example [GoogleAlphaIMO]), but they are cumbersome for largesystems and should be the subject of basic research.Programming languages and abstractions.As discussed above, it is not clear howprogramming languages should evolve as they are increasingly targeted by AI-basedtools. It is unclear whether the choice of abstractions should mirror those designedfor human developers or be created specifically to exploit the strengths of generativeAI methods, whatever that entails. A key issue will be the lack of training data for anynew programming language or language features.Open-ended problems. For hardware design, AI-based tools can be given an open-ended problem, such as. “design a CPU that executes these programs, as fast aspossible, given this transistor/power budget”. This problem includes design spaceexploration but is much broader in scope, as it is not constrained by parametersdefined ahead of time by people.Optimization of neural networks.In addition, the increasing and tremendouscomplexity of neural networks, present in all machine-learning applications, willrequire more and more reliance on automated AI-based tools to help design efficientsolutions and master their huge complexity. These tools will need to exploit multi-• • • •
HiPEAC Vision 2025 - Articles 5

criteria optimization methods and to generate optimized code for a given hardware,in order to take into account the numerous embedded constraints that it mustguarantee. These constraints can cover the induced power, the memory size, theprediction accuracy or for instance the type of operations used to remain compatiblewith the final hardware. The supported hardware must be compatible with the latestinnovations and computing trends, including for instance heterogeneous system-on-chips (SoCs) with dedicated neural networks accelerators. The output of these AI-based tools, based on neural architecture search (NAS) methods, should be able todesign optimized and frugal AI applications, for all AI applications using LLMs,transformers or Mamba algorithms. These tools will also have to integrate trustableand explainable methods to bring to the user the knowledge used by the tools toobtain the final results, in order to integrate critical embedded systems.Develop European agents, tools and infrastructureIn today’s geopolitical climate, European sovereignty over its AI models is crucial, especiallyas AI-based technologies increasingly influences national security, economic competitionand social governance. AI-based tools for hardware and software development stand outfrom general AI due to the foundational role they can play in building and shaping futuretechnology, as well as their role in innovation and competitive advantage.AI development tools will serve as the backbone of the digital economy, facilitating thecreation of chips, communication networks, cloud infrastructures, middleware, andapplications that support all other AI-based applications, from autonomous vehicles tosmart cities. If Europe lags behind in this area, it will become dependent on foreign supplierswhose interests may not align with European priorities. In a worst-case scenario, thisdependency could lead to hardware and software being compromised or containing hiddenbackdoors, creating significant national security risks.The race to build AI development tools is, in essence, a competition for leadership in theglobal tech economy. European countries must have access to the most advanced tools andbe able to influence their development, in order to compete with global giants from the USand China, and help Europe to remain a leading force in key industries such as automotivemanufacturing, telecommunications and fintech.At the same time, Europe is recognized for its strong commitment to ethics, legal,socioeconomic and cultural aspects of the use of AI-based technologies and its uniqueregulatory frameworks. Some global companies have already opted to withhold support fortheir most advanced AI rather than adjusting to European regulations. If this trend continuesand worsens, especially in times of geopolitical tension, it could stifle economiccompetitiveness. In the worst case, there will be significant pressure to undermine Europeanethics.Focus on education, training and jobsAs of 2025, AI tools can fully automate the creation of simple code, consisting of a fewhundred lines, and they are powerful assistants to human developers in full-scaledevelopment projects. However, as described so far, these tools are cannot yet replaceproficient and experienced developers. As these tools advance, important questions ariseabout the future of the workforce in the hardware and software industries, which currentlyemploy millions of people globally.Over the next few years, AI tools are likely to continue to assist developers, particularly inroutine and repetitive tasks, freeing developers to focus on higher-level design and problem-solving. In this period, many routine tasks will be automated, leading to a shift in work for
Tools6

developers. Entry-level positions may be affected, but mid-level and senior developers willstill be in high demand to oversee complex projects, integrate AI-generated code, and ensurequality and creativity in the final product. This will place greater and distinct demands oneducation, which may be alleviated by individualized AI-based training helping to makeprogramming more fun and learnable by people at a younger age.As of 2025, at the height of the hype curve for AI, it is important to maintain a historicalperspective. In 1954, IBM’s Fortran specification claimed that “Since FORTRAN shouldvirtually eliminate coding and debugging, it should be possible to solve problems for lessthan half the cost that would be required without such a system” [FORmula]. Similar claimswere made in the 1980s, for fourth-generation languages, such as SQL, ABAP and COBOL85. While these technologies did reduce development cost and time (by much more thanhalf), the belief that they would eliminate the need for software developers was wildlyoptimistic. In practice, the necessary skills moved from assembly language coding to thewide class of skills needed for large scale software development today.Nevertheless, while history is a guide, it is not guaranteed to repeat. In the long term, AI toolsmay evolve to the point where they can build increasingly complex systems autonomously.Will AIs be able to replace a team of human developers, with a human taking on the role of achief architect or CTO interacting with AI? What happens when something goes wrong? Atthis point we do not know.ConclusionIn conclusion, the integration of AI tools into hardware and software development offerstransformative potential, and it has the potential to inject a major discontinuity into thedevelopment process. By utilizing natural language interfaces and leveraging AI'scapabilities, development processes can become more efficient, reducing time and costs,while also democratizing access to advanced technologies. However, the risks associatedwith AI-generated outputs, such as safety, correctness, security, and confidentiality, must notbe overlooked. Europe must prioritize basic research in AI, develop its own AI tools andmodels, and ensure that AI’s role in development remains aligned with ethical, regulatory,and security standards. Furthermore, as AI tools evolve, the future workforce will need toadapt, with AI serving as a powerful assistant to human developers rather than a completereplacement. The success of Europe in this rapidly advancing field will depend on fostering arobust AI ecosystem, ensuring technological sovereignty, and investing in education andtraining for the next generation of developers.ReferencesALSAQER: Shadan Alsaqer, Sarah Alajmi, Imtiaz Ahmad, Mohammad Alfailakawi, “The potential ofLLMs in hardware design”, Journal of Engineering Research, 2024. ISSN 2307-1877. https://doi.org/10.1016/j.jer.2024.08.001ChatEDA: Z. He, H. Wu, X. Zhang, X. Yao, S. Zheng, H. Zheng, B. Yu, “ChatEDA: A large languagemodel powered autonomous agent for EDA”, In: 2023 ACM/IEEE 5th Workshop on Machine Learningfor CAD (MLCAD), IEEE, 2023, 1-6.ChipGPT: K. Chang, Y. Wang, H. Ren, M. Wang, S. Liang, Y. Han, H. Li, X. Li, “ChipGPT: How far are wefrom natural language hardware design”, arXiv preprint arXiv: 2305.14019 (2023).ChipNeMo: https://research.nvidia.com/publication/2023-10_chipnemo-domain-adapted-llms-chip-designCodeLlama: https://ai.meta.com/blog/code-llama-large-language-model-coding/CodeLlamaLicence: https://github.com/facebookresearch/llama/blob/main/LICENSE
HiPEAC Vision 2025 - Articles 7

https://doi.org/10.1016/j.jer.2024.08.001
https://doi.org/10.1016/j.jer.2024.08.001
https://research.nvidia.com/publication/2023-10_chipnemo-domain-adapted-llms-chip-design
https://research.nvidia.com/publication/2023-10_chipnemo-domain-adapted-llms-chip-design
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://github.com/facebookresearch/llama/blob/main/LICENSE

Codestral: https://mistral.ai/news/codestral/FORmula: Preliminary Report. Specifications for The IBM Mathematical FORmula TRANslatingSystem. 1954. https://www.softwarepreservation.org/projects/FORTRAN/BackusEtAl-Preliminary%20Report-1954.pdfFTAug2024: https://www.ft.com/content/4868bd38-613c-4fa9-ba9d-1ed8fa8a40c8?utm_source=chatgpt.comGitHubCopilot: https://github.com/features/copilotGoogleAlphaIMO: Google’s AlphaProof and AlphaGeometry use the Lean theorem prover to checktheir solution to problems from the International Mathematics Olympiad (IMO) https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/GoogleCodeAssist: https://cloud.google.com/products/gemini/code-assistGoogleJules: https://developers.googleblog.com/en/the-next-chapter-of-the-gemini-era-for-developers/KordonZaourar: Munier Kordon, A., & Zaourar, L. (2024). “Challenges in EDA: from operationalresearch techniques to Artificial Intelligence strategies for chip design”. HiPEAC Vision 2024,Rationale. https://doi.org/10.5281/zenodo.10874774LLM4HPC: Pedro Valera–Lara. LLM4HPC: Towards an AI-autonomous HPC world. https://www.hpcuserforum.com/wp-content/uploads/2024/10/Pedro-Valero-Lara-ORNL_LLM4HPC-Towards-an-AI-autonomous-HPC-World_HPC-UF-BSC-Oct-2024.pdfMetzger: Metzger, A. (2024). “AI-Assisted Software Engineering (AISE)”. HiPEAC Vision 2024,Rationale. https://doi.org/10.5281/zenodo.10874754MicrosoftCopilot: https://copilot.microsoft.com/OpenAICodex: https://openai.com/index/openai-codex/Qiu24: S. Qiu, B. Tan, H. Pearce, “Explaining EDA synthesis errors with LLM”, arXiv preprint arXiv:2404.07235 (2024).SpecLLM: M. Li, W. Fang, Q. Zhang, Z. Xie, “SpecLLM: Exploring generation and review of VLSI designspecification with Large Language Model”, arXiv preprint https://arxiv.org/abs/2401.13266 (2024).StackOverflow2024: https://survey.stackoverflow.co/2024/ai#sentiment-and-usage-ai-sel-prof
Tools8

https://mistral.ai/news/codestral/
https://www.softwarepreservation.org/projects/FORTRAN/BackusEtAl-Preliminary%20Report-1954.pdf
https://www.softwarepreservation.org/projects/FORTRAN/BackusEtAl-Preliminary%20Report-1954.pdf
https://www.ft.com/content/4868bd38-613c-4fa9-ba9d-1ed8fa8a40c8?utm_source=chatgpt.com
https://www.ft.com/content/4868bd38-613c-4fa9-ba9d-1ed8fa8a40c8?utm_source=chatgpt.com
https://github.com/features/copilot
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://cloud.google.com/products/gemini/code-assist
https://developers.googleblog.com/en/the-next-chapter-of-the-gemini-era-for-developers/
https://developers.googleblog.com/en/the-next-chapter-of-the-gemini-era-for-developers/
https://doi.org/10.5281/zenodo.10874774
https://www.hpcuserforum.com/wp-content/uploads/2024/10/Pedro-Valero-Lara-ORNL_LLM4HPC-Towards-an-AI-autonomous-HPC-World_HPC-UF-BSC-Oct-2024.pdf
https://www.hpcuserforum.com/wp-content/uploads/2024/10/Pedro-Valero-Lara-ORNL_LLM4HPC-Towards-an-AI-autonomous-HPC-World_HPC-UF-BSC-Oct-2024.pdf
https://www.hpcuserforum.com/wp-content/uploads/2024/10/Pedro-Valero-Lara-ORNL_LLM4HPC-Towards-an-AI-autonomous-HPC-World_HPC-UF-BSC-Oct-2024.pdf
https://doi.org/10.5281/zenodo.10874754
https://copilot.microsoft.com/
https://openai.com/index/openai-codex/
https://arxiv.org/abs/2401.13266
https://survey.stackoverflow.co/2024/ai#sentiment-and-usage-ai-sel-prof

